Water Quality Status of Jatigede Reservoir
Sumedang Regency, West Java

Ayi Yustiati a*, Maria Sintiyani Woro Saputri a, Titin Herawati b and Herman Hamdani a

a Fisheries Study Program, Faculty of Fisheries and Marine Science, Padjadjaran University, Indonesia.
b Marine Conservation Study Program, Faculty of Fisheries and Marine Science, Padjadjaran University, Jalan Raya Bandung – Sumedang KM 21 Jatinangor, Sumedang, 45363, Indonesia.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

With the captured fisheries sector as a livelihood for residents around Jatigede, it is feared that water quality will decline. Another function of the Jatigede Reservoir is to irrigate irrigation canals, control floods, source PLTA power, and raw water to serve the people of Sumedang, Indramayu, and Cirebon city. The intended purpose is to determine the quality of water in the Jatigede Reservoir. This research was carried out in Jatigede Reservoir from November 2020 to August 2021, using the survey method. The method of determining the location used a purposive sampling method, carried out at five stations representing Jatigede Reservoir. The water quality parameters used are temperature, pH, dissolved oxygen, and brightness. The results of observations of water quality in Jatigede Reservoir with temperatures ranging from 28°C-29°C, pH ranging from 6.67-8.35, dissolved oxygen ranging from 6.8-7.83 mg/l and brightness ranging from 70-93.8 cm indicate that the water quality of the Jatigede Reservoir is still categorized into good water quality and is ideal for capture fisheries sector activities in the Jatigede Reservoir. The results of the status of water quality in the waters of the Jatigede Reservoir are included in the category of Fulfill Quality Standards to Lightly Polluted, and the average Pollution Index value ranges from 1.75 to 3.01 in class II water quality standards and 0.86-1.94 in class III water quality standards. Water quality in Jatigede Reservoir during the research was influenced by the input of river flow in the form of
organic and inorganic waste. Water pollution control strategies can be carried out by increasing the inventory and identification of pollutant sources, improving waste management, determining the capacity of the pollution load, increasing knowledge and community participation in waste management, increasing supervision of wastewater development, and improving water quality monitoring.

Keywords: Water quality; fisheries; Jatigede Reservoir; Indonesia.

1. INTRODUCTION

Jatigede Reservoir located in Sumedang Regency, West Java Province, Indonesia has an area of ± 4,122 ha. This reservoir was built by damming the Cimanuk River. In addition, the water source of the Jatigede Reservoir also comes from the Cialing and Cinambo rivers and several other tributaries. The function of the Jatigede Reservoir is to irrigate 90,000 ha of irrigation canals, control an area of 14,000 ha of floods, and a hydroelectric power source capable of generating electricity of 690 GWh/year with a capacity of 110 MW, and other functions of the Jatigede Reservoir are the tourism and capture fisheries sectors [1]. According to Herawati et al. [2], Jatigede Reservoir water quality was optimum for fish growth. Changes in water quality can come from the high content of sediment originating from erosion, agricultural activities, and other activities, organic waste from humans, animals and plants, and the speed of increase in chemical compounds originating from industrial activities that dump their waste into the waters [3].

The increasing population around the Jatigede Reservoir is one of the most worrying things because the activities of the surrounding community often cause pollution in the waters [4]. The utilization of the Jatigede Reservoir is very diverse so the quality of the reservoir waters needs to be considered. One of the impacts caused by the activities of the community around the reservoir is domestic waste and agricultural waste carried by the river. The input of domestic and agricultural waste will worsen reservoir sediment conditions [5]. Domestic waste is waste that comes from the daily activities of the surrounding community related to the use of water. One of them is the disposal of household waste such as detergent. And agricultural waste in the form of fertilizer residue contains a lot of nitrate and phosphate elements [6]. Waste originating from within is organic and inorganic material from the decay of agricultural land, plantations, forests, settlements, ponds, at the bottom of submerged waters and the results of the decomposition process [2].

In addition, around the waters of the Jatigede Reservoir, fish farming activities using floating nets cause environmental conditions to decrease greatly, it can disrupt the life of natural biota and even further reduce the diversity of biotas such as fish and other organisms in the reservoir [7]. As a place for the capture fisheries sector and floating net cage aquaculture activities, it should have certain natural facilities, especially sufficient water supplies, with appropriate water quality [8,9]. This is intended to see the quality of the Jatigede Reservoir in general.

2. METHODOLOGY

The research was conducted from November 2020 to August 2021. The method used in determining the stations was carried out by the survey method. The method used in sampling is a purposive sampling method. The research locations were determined based on five stations based on the input of river water flowing through the Jatigede Reservoir, as follows:

- Station 1, coordinates 6°55'29.7" S 108°05'10.9" E. The estuary of the Cimuja river is located in Cimalaka District.
- Station 2, coordinates 6°55'49.2" S 108°05'39.3" E. The estuary of the Cialing river is located in Wado District.
- Station 3, coordinates 6°55'39.6" S 108°05'44.1" E. The reservoir inlet is from the Cimanuk river in Wado District.
- Station 4, coordinates 6°55'11.8" S 108°06'32.8" E. The estuary of the Cacaban river is located in the District of Cadas Ngampar.
- Station 5, coordinates 6°54'53.6" S 108°05'46.2" E. The estuary of the Cihonje River in Cisitu District.
This research was carried out in November 2020 - August 2021 in the waters of the Jatigede Reservoir at 5 observation stations using the purposive sampling method on each surface of the waters of the observation station. Measurement of physical and chemical parameters was carried out in situ which included measuring temperature using a thermometer on the DO meter, measuring brightness using a secchi disk, measuring pH using a pH meter and measuring dissolved oxygen using a DO meter. The method used in this research is a comparative descriptive method.

3. RESULTS AND DISCUSSION

The results of the measurement of the physical and chemical parameters of the waters at the study site showed varied patterns of change. The results of the measurement of physical and chemical parameters are presented in Table 2.

Temperature is an environmental factor that can affect the life of aquatic organisms either directly or indirectly. The results of measuring the temperature of the Jatigede Reservoir at the five research stations ranged from 28°C-29°C. The time of temperature measurement for each station is done in the morning. This indicates that the waters are still within the tolerance range for fish life. The temperature range of the five stations is still normal, according to Frasawi et al. [10], the optimal temperature for fish growth, especially for fish appetite, is 28°C-32°C, especially for fish of the Cyprinidae and Cichlidae families. As seen at the temperature of stations I and 5, the high temperature of the waters at this station is related to the intensity of sunlight and oxygen entering the waters. Temperature is also influenced by seasons, air circulation, water flow and water depth [11]. Temperature greatly affects the life and growth of fish in waters, where temperature affects the metabolic activity of fish. Fish metabolism will increase along with
the increase in water temperature [9]. Government Regulation Number 22 of 2021, [12] Class 3 Lake Water Quality Standards require a temperature with a deviation of 3°C, based on this it shows that the water temperature of the Jatigede Reservoir is suitable for fish growth.

The degree of acidity (pH) is a limiting factor for organisms that live in water. Based on the measurement of the pH of the Jatigede Reservoir, the pH ranged from 6.67 to 8.35. Each station experienced a change in pH. The comparison of pH at the time of measurement is not much different. The station that has the highest pH is a station I with a pH ranging from 8.35. The condition of the waters of Jatigede Reservoir is still said to be in normal condition and can support fish life. Things are different with station 3 which has a pH value of 6.7. The pH value at station 3 shows a low result compared to the pH of other stations while judging from the diversity of fish at station 3 the results are higher. Hal ini dapat terjadi karena nilai pH 6.7 masih mendukung kelangsungan hidup ikan. However, Akrimi and Subroto [13] stated that a low pH can cause oxygen absorption by organisms to be disrupted which can affect the resistance of organisms and reduce appetite so that fish growth will be inhibited.

In general, the pH at each station is classified as alkaline and is still in the appropriate range for fisheries. It still meets the criteria for class 3, namely 6.00 – 9.00 according to the Lake Water Quality Standard. 22 of 2021 in Indonesia. Judging from the results of pH measurements in the Jatigede Reservoir, it is shown that it is neutral - alkaline. Alkaline water due to inundation areas has a Mediterranean soil texture that contains lime, which affects the growth of organisms in it [14]. Mediterranean soil type is soil formed from limestone so it has a big effect on increasing pH in the Jatigede Reservoir. Based on this, the alkaline pH of Jatigede Reservoir will increase oxygen consumption so that fish appetite will increase and will support fish growth.

Dissolved oxygen is one of the limiting factors for fish life. The brightness measured in the Jatigede Reservoir during the research, ranged from 70-93.8 cm. Suparjo [15] stated that a brightness value of more than 45 cm is good for fish life, especially about the visual organs of fish and the level of predation. The station that has the lowest transparency is station 3, which is 70 cm. This is due to a large number of suspended solids. The decrease in brightness can also be caused by the amount of material in the water. Suspended solids will reduce oxygen and the process of photosynthesis [16,17]. Effendi [18] water brightness depends on the color and turbidity. However, several types of fish are tolerant of low light penetration, one of which is the squid fish. In general, the results of observations show that there are differences in the value of the transparency range at each station, but the value of transparency at each station is still relatively good, even though there is no stipulation on the brightness parameter in PP. 22 of 2021, however, referring to the designation of the Jatigede Reservoir as a fishery activity facility and infrastructure, according to Kordi & Tanjung [19] good transparency for aquatic organisms ranges from 30-40 cm, whereas if the brightness value is less than 30 cm, water is considered not optimal for supporting plankton life [20] and causing a decrease in dissolved oxygen concentration in the waters.

Table 2. The results of the measurement of physical and chemical parameters of waters in Jatigede Reservoir

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Station 1</th>
<th>Station 2</th>
<th>Station 3</th>
<th>Station 4</th>
<th>Station 5</th>
<th>Deviation 2</th>
<th>Deviation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>29</td>
<td>28</td>
<td>28</td>
<td>29</td>
<td></td>
<td>Deviation 3</td>
<td>Deviation 3</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>8.35</td>
<td>7.57</td>
<td>6.7</td>
<td>7.97</td>
<td>8.27</td>
<td>6-9</td>
<td>6-9</td>
</tr>
<tr>
<td>DO</td>
<td>mg/l</td>
<td>6.8</td>
<td>7.1</td>
<td>7.8</td>
<td>6.8</td>
<td>6.6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Light Transparency</td>
<td>cm</td>
<td>72.8</td>
<td>73.5</td>
<td>70</td>
<td>93.8</td>
<td>84</td>
<td>4</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Dissolved oxygen is an important parameter in water, as well as a limiting factor for the life of aquatic organisms. The results of the measurement of the average dissolved oxygen at each station ranged from 6.8 to 7.83 mg/l. The highest dissolved oxygen value was found at station 3 of 7.83 mg/l and the lowest was at station 5 of 6.6 mg/l. Overall the dissolved oxygen value of each research station still supports fish life under class 3 water quality standards based on PP no. 22 of 2021 which categorizes the minimum value of dissolved oxygen, which is 3. The availability of dissolved oxygen in water greatly determines the life of fish. The high value of dissolved oxygen.
indicates that photosynthetic activity is still increasing in these waters. The high value of dissolved oxygen at station 3 can occur because high flow conditions have strong currents so that more oxygen in the air is dissolved. Stations 1, 2 and 5 with low dissolved oxygen values indicate slightly calm water conditions. at stations 1, 4 and 5 indicate that the low value of dissolved oxygen is due to the high organic matter compared to stations 2 and 3. The increase in organic matter will be followed by a decrease in dissolved oxygen due to the degradation process carried out by microorganisms. The value of dissolved oxygen is said to be low because of the large amount of waste that enters the waters so dissolved oxygen in the waters is used to decompose organic compounds contained in the waters and there is less residual oxygen dissolved in it [21]. According to Salmin [22], oxygen plays an important role as an indicator of water quality, dissolved oxygen in the process of oxidation and reduction of organic and inorganic materials, because of the oxidation and reduction processes, the role of dissolved oxygen is very important to help reduce the high pollution load in water.

4. CONCLUSION

In general, the water quality in the Jatigede Reservoir is still classified as good because it is still limited to the lake water quality standard set for fishery activities, based on the lake water quality standard Government Regulation No. 22 of 2021 is included in class 2 and 3. The results of the status of water quality in the waters of the Jatigede Reservoir are included in the category of Fullfill Quality Standards to Lightly Polluted, and the average Pollution Index value ranges from 1.75 to 3.01 in class II water quality standards and 0.86-1.94 in class III water quality standards. Water quality parameters include temperature ranging from 28° C -29°C, pH ranging from 6.7-8.35, dissolved oxygen ranging from 6.6-7.83, and brightness ranging from 70-93.8 cm and the range is good for fishery sector activities.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2022 Yustiati et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/91242