Fatty Acid Composition of Seed Oil from Pachira aquatica Grown in Nigeria

Main Article Content

Afolayan S. Sunday
Igbum O. Gillian
Igoli O. John


The relative composition of the fatty acids in Pachira aquatica seed oil were determined using GC-MS and 1H NMR. The results obtained from GC-MS and 1H NMR show that the oil contained saturated fatty acids (>67%), oleic acid (>18%), linoleic (>3%) and linolenic acid (≤0.01%). 1H NMR gave more reliable and reproducible results.

Pachira aquatic, seed oil, fatty acids, GC-MS, NMR, Nigeria.

Article Details

How to Cite
Sunday, A., Gillian, I., & John, I. (2019). Fatty Acid Composition of Seed Oil from Pachira aquatica Grown in Nigeria. Journal of Agriculture and Ecology Research International, 18(4), 1-9. https://doi.org/10.9734/jaeri/2019/v18i430065
Original Research Article


Lorenzi H. Brazilian Trees. 4th Edition. Instituto Plantarum De Estudos Da Flora; Brazil. 2002;1.
ISBN: 85-86714-17-8

Oni PI, Malomo AO, Adekoyeni OO. Preliminary evaluation of the ecology, economic importance and nutritional potentials of Pachira aglabra (Pasq.); a neglected fruit tree in Nigeria. International Journal of Current Microbiology and Applied Sciences. 2015;4(2):1030-1036.

Cheng LY, Liao HR, Chen LC, Wang SW, Kuo YH, Chung MI, Chen JJ. Naphthofuranone derivatives and other constituents from Pachira aquatica with inhibitory activity on superoxide anion generation by neutrophils. Fitoterapia. 2017;117:16-21.

Paula VF, Rocha ME, Barbosa LCDA, Howarth OW. Aquatidial: A new bis-Norsesquiterpenoid from Pachira aquatica Aubl. Journal of the Brazilian Chemical Society. 2006;17(7):1443-1446.

Rizk AF, Al-Nowaihi AS. The phytochemistry of the horticultural plants of Qatar. Alden Press: Oxford; 1989.

Lorenzi H. Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Editora Plantarum. 352p.-col. illus. Por Geog, 4(1992).

Peixoto AL, Escudeiro A. Pachira aquatica (Bombacaceae) na obra “história dos Animais e Árvores do Maranhão” de Frei Cristóvão de Lisboa. Rodriguésia. 2002;53(82):123-130.

Paula VF, Cruz MP, Barbosa LCDA. Chemical constituents of Bombacopsis glabra (Bombacaceae). Química Nova. 2006;29(2):213-215.

Yeboah SO, Mitei YC, Ngila JC, Wessjohann L, Schmidt J. Compositional and structural studies of the oils from two edible seeds: Tiger nut, Cyperus esculentum, and asiato, Pachira insignis, from Ghana. Food Research International. 2012;47(2):259-266.

Andrade-Cetto A, Heinrich M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology. 2005;99(3):325-348.

Pietsch J, Koch I, Hermanns-Clausen M, Hüller G, Wagner R, Dressler J. Pediatric plant exposures in Germany, 1998–2004. Clinical Toxicology. 2008;46(7):686-691.

Ogunlade I, Ilugbiyin A, Osasona AI. A comparative study of proximate composition, anti-nutrient composition and functional properties of Pachira glabra and Afzelia africana seed flours. African Journal of Food Science. 2011;5(1):32-35.

Karp D. Commercialization of Mangosteen in the United States: Domestic Cultivation, Imports and Marketing. Journal of the American Pomological Society. 2010;64(1):5.

Wickens GE. Edible nuts. Non-wood forest products 5. FAO, Rome. 1995;198.
ISBN: 92-5-103748-5

Facciola S. Comucopia ll. Kampong Publications, California; 1998.
ISBN: 0-9628087-2-5

Buchgraber M, Ulberth F, Emons H, Anklam E. Triacylglycerol Profiling by Using Chromatographic Techniques. Eur. J. Lipid Sci. Technol. 2004;106:621–648.

Bagci E. Fatty acid and tocochromanol patterns of two Euphorbia species (Euphorbia orientalis L. ve Euphorbia macroclada Boiss) (Euphorbiaceae). Int. J Sci Tech. 2007;2(2):93-98.

Bagci E, Ozcelik H. Fatty acid and tocochromanol patters of some Isatis l. (Brassicaceae) species from Turkey. Park. J. Bot. 2009;41(2):639-649.

Bhide DR, Karadbhajne VY, Khotpal RR, Kulkarni AS. Fatty acids distribution in lipids of orange and tomato seeds of Vidarbha region (Mahaeashtra). J. Chem. and Pharm. Res. 2013;5(4):13-15.

Dijkstra J, Christie WW, Knothe G. Chromatographic analysis of lipid IN: Gunstone FD, Harwood JL, Dijkstra AJ (Eds). The Lipid Handbook (3rd ed). USA, CRC Press. 2007;421.

Mavromoustakos T, Zervou M, Theodoropoulou E, Panagiotopoulos D, Bonas G, Day M, Helmis A. 13C NMR analysis of the triacylglycerol composition of Greek virgin olive oils. Magnetic Res. Chem. 1997;35:S3-S7.

Knothe G, Kenar JA. Determination of fatty acid profile by 1H NMR spectroscopy. European Journal of Lipid Science and Technology. 2004;106:88-99.

Hidalgo JF, Zamora R. Edible oil analysis by high-resolution nuclear magnetic resonance spectroscopy: Recent advances and future perspectives. Trends Food Sci. Technol. 2003;14:499–506.

Guillén MD, Ruiz A. High resolution 1H nuclear magnetic resonance in the study of edible oils and fats. Trends Food Sci. Technol. 2001;12:328–338.

Guillén MD, Ruiz A. 1H nuclear magnetic resonance as a fast tool for determining the composition of acyl chains in acylglycerol mixtures. Eur. J. Lipid Sci. Techn.., 2003105, 502–507.

Guillen MD, Ruiz A. Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils. Eur. J. Lipid Sci. Technol. 2003;105:688–696.

Lie Ken Jie MS, Mustafa J. High‐resolution nuclear magnetic resonance spectroscopy — Applications to fatty acids and triacylglycerols. Lipids. 1997;32(10):1019-1034.

Dos Santos RC, Chagas EA, Takahashi JA, Ferraz VP, Costa AKP, de Melo ACGR, Montero IF, Ribeiro PRE. Fatty acid profile and bioactivity from Annona hypoglauca seeds oil. African Journal of Biotechnology. 2015;14(30):2377-2382.

Thoss V, Murphy PJ, Marriott R, Wilson T. Triacylglycerol composition of British bluebell (Hyacinthoides non-scripta) seed oil. RSC Advances. 2012;2(12):5314-5322.

Chaves MH, Araújo FDS, Moura CVR, Tozetto LJ, Aued-Pimentel S, Caruso MSF. Chemical characterization and stability of the Bombacopsis glabra nut oil. Food and Public Health. 2012;2(4):104-109.

Bohannon MB, Kleiman R. Cyclopropene fatty acids of selected seed oils from Bombacaceae, Malvaceae and Sterculiaceae. Lipids. 1978;13(4):270-273.

Mukhtar A. Oil and fatty acid composition of peanut cultivars grown in Pakistan. Pakistan Journal of Botany. 2012;44(2): 627-630.

Jorge N, Luzia DMM. Characterization of seed oil Pachira aquatica Aublet for food utilization. Acta Amazonica. 2012;42(1): 149-156.

Alexandri E, Ahmed R, Siddiqui H, Choudhary M, Tsiafoulis C, Gerothanassis, I. High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution. Molecules. 2017;22(10):1663-1733.

Fauhl C, Reniero F, Guillou C. 1H NMR as a tool for the analysis of mixtures of virgin olive oil with oils of different botanical origin. Magnetic Resonance in Chemistry. 2000;38(6):436-443.

Salinero C, Feás X, Mansilla JP, Seijas JA, Vázquez-Tato MP, Vela P, Sainz MJ. 1H-nuclear magnetic resonance analysis of the triacylglyceride composition of cold-pressed oil from Camellia japonica. Molecules.2012;17(6):6716-6727.

Gunstone FD, Knothe GH. Nuclear magnetic resonance spectroscopy of fatty acids and their derivatives. AOCS Lipid Library; 2014.

Vlahov G. Application of NMR to the study of olive oils. Progress in Nuclear Magnetic Resonance Spectroscopy. 1999;35(4): 341-357.