A comprehensive Review on Genomic Approaches for Insect Pest Management

Kishor Pujar

Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, GKVK, Campus- 560065, India.

Kailas S. Pagire

Department of Agriculture Entomology, Agriculture College, Gadchiroli, DR. PDKV, Akola-444104, India.

Archana B. R.

Department of Entomology, University of Agricultural Sciences, Raichur, India.

Pooja Purushotham

Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru-560065, India.

Sourav Chakrabarty

Department of Entomology, ICAR- Indian Agricultural Research Institute, Pusa, New Delhi- 110012, India.

Kundan Muwel

Krishi Vigyan Kendra, Umariya 484661, JNKVV Jabalpur, M.P., India.

Ranjita Saikia

Department of Nanotechnology, Asian Institute of Technology, Bangkok, Thailand.

Arun Kumar *

Department of Entomology, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur-208002 (U.P.), India.

*Author to whom correspondence should be addressed.


Genomic approaches, such as RNA interference (RNAi) and CRISPR/Cas9, have shown promise for insect pest management. RNAi techniques involve the use of double-stranded RNAs (dsRNA) to silence specific target genes in arthropod pests, which can be highly selective and safe for non-target organisms. CRISPR/Cas9 technology, on the other hand, allows for precise editing of insect genomes, offering potential strategies for controlling pests through various mechanisms such as impairing reproductive capacity or making pests susceptible to insecticides. These genomic approaches provide species-specific and environmentally friendly alternatives to chemical insecticides, which are facing challenges such as resistance and negative impacts on human health and the environment. However, there are still challenges to overcome, such as the delivery of genetic material into the germline of insects, particularly in the Hemiptera order. Further research and advancements in these genomic technologies are needed to fully realize their potential for insect pest management.

Keywords: CRISPR/Cas9, environmentally friendly, genetic material, genomic approaches and RNAi

How to Cite

Pujar, K., Pagire, K. S., Archana B. R., Purushotham, P., Chakrabarty, S., Muwel, K., Saikia , R., & Kumar , A. (2024). A comprehensive Review on Genomic Approaches for Insect Pest Management. Journal of Agriculture and Ecology Research International, 25(3), 146–164. https://doi.org/10.9734/jaeri/2024/v25i3602


Download data is not yet available.


Philip T, Leftwich, Lewis G, Spurgin Tim, Harvey-Samuel, Callum JE, Thomas, Leonela, Zusel, Carabajal, Paladino, Matthew P, Edgington, Luke Alphey. Genetic pest management and the background genetics of release strains. Philosophical Transactions of the Royal Society B. 2021;376(1818):20190805.

DOI: 10.1098/RSTB.2019.0805

Jean-Luc, Renaud. Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives. Frontiers in Bioengineering and Biotechnology. 2022;10.DOI: 10.3389/fbioe.2022.900785

Babiker MA, Abdel-Banat, Hamadttu AF, El-Shafie. Genomics Approaches for Insect Control and Insecticide Resistance Development in Date Palm. 2021;215-248.

DOI: 10.1007/978-3-030-73750-4_11

Sanchita Singh, Somnath, Rahangdale, Shivali, Pandita, Gauri, Saxena, Santosh, Kumar, Upadhyay, Geetanjali, Mishra, Praveen, Chandra, Verma. CRISPR/Cas9 for Insect Pests Management: A Comprehensive Review of Advances and Applications. Agriculture. 2022;12(11): 1896-1896. DOI: 10.3390/agriculture12111896

NMNH, Division, of, Mammals. Innovative Molecular Approaches for Pest Management. 2022;27-43. DOI: 10.1007/978-981-19-0264-2_2

Singh A, Khan MW. (Eds.). Modulating gene expression: Abridging the rnai and crispr-cas9 technologies. BoD–Books on Demand; 2019.

LaFountaine JS, Fathe K, Smyth HD. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. International Journal of Pharmaceutics. 2015;494(1):180-194.

Christiaens O, Whyard S, Vélez AM, Smagghe G. Double-stranded RNA technology to control insect pests: Current status and challenges. Frontiers in Plant Science. 2020;11:451.

Sow A, Brévault T, Delvare G, Haran J, Benoit L, d'Acier AC, Sembène AM. DNA sequencing to help identify crop pests and their natural enemies in agro-ecosystems: The case of the millet head miner Heliocheilus albipunctella (Lepidoptera: Noctuidae) in sub-Saharan Africa. Biological Control. 2018;121:199-207.

Oliveira CM, Auad AM, Mendes SM, Frizzas MR. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Protection. 2014;56:50-54.

Haddi K, Turchen LM, Viteri Jumbo LO, Guedes RN, Pereira EJ, Aguiar RW, Oliveira EE. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Management Science. 2020;76(7): 2286-2293.

Boudh S, Singh JS. Pesticide contamination: Environmental problems and remediation strategies. Emerging and Eco-Friendly Approaches for Waste Management. 2019;245-269.

Baker BP, Green TA, Loker AJ. Biological control and integrated pest management in organic and conventional systems. Biological Control. 2020;140:104095.

Tyagi S, Kesiraju K, Saakre M, Rathinam M, Raman V, Pattanayak D, Sreevathsa R. Genome editing for resistance to insect pests: An emerging tool for crop improvement. ACS Omega. 2020;5(33): 20674-20683.

Wani SH, Choudhary M, Barmukh R, Bagaria PK, Samantara K, Razzaq A, Varshney RK. Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. Theoretical and Applied Genetics. 2022;135(11):3875-3895.

Huseth AS, Groves RL, Chapman SA, Alyokhin A, Kuhar TP, Macrae IV, Nault BA. Managing Colorado potato beetle insecticide resistance: New tools and strategies for the next decade of pest control in potato. Journal of Integrated Pest Management. 2014;5(4):A1-A8.

Stejskal V, Vendl T, Aulicky R, Athanassiou C. Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects. 2021;12(7): 590.

Stejskal V, Vendl T, Aulicky R, Athanassiou C. Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects. 2021;12(7): 590.

O'Brien, Richard D. Insecticides: Action and metabolism; 2014.

Kodandaram MH, Rai AB, Halder J. Novel insecticides for management of insect pests in vegetable crops: A review. Vegetable Science. 2010;37(2):109-123.

Siegwart M, Graillot B, Blachere Lopez C, Besse S, Bardin M, Nicot PC, Lopez-Ferber M. Resistance to bio-insecticides or how to enhance their sustainability: A review. Frontiers in Plant Science. 2015; 6:381.

Serrão JE, Plata-Rueda A, Martínez LC, Zanuncio JC. Side-effects of pesticides on non-target insects in agriculture: A mini-review. The Science of Nature. 2022;109 (2):17.

Naidu R, Biswas B, Willett IR, Cribb J, Singh BK, Nathanail CP, Aitken RJ. Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environment International. 2021;156: 106616.

Hajek AE, Eilenberg J. Natural enemies: An introduction to biological control. Cambridge University Press; 2018.

Van Driesche R, Hoddle M. Control of pests and weeds by natural enemies: an introduction to biological control. John Wiley and Sons; 2009.

Rajendran TP, Singh D. Insects and pests. In Ecofriendly Pest Management for Food Security (pp. 1-24). Academic Press; 2016.

Bale JS, Van Lenteren JC, Bigler F. Biological control and sustainable food production. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008;363(1492):761-776.

Bale JS, Van Lenteren JC, Bigler F. Biological control and sustainable food production. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008;363(1492):761-776.

Macfadyen S, Davies AP, Zalucki MP. Assessing the impact of arthropod natural enemies on crop pests at the field scale. Insect Science. 2015;22(1):20-34.

Boiteau G, Vernon RS. Physical barriers for the control of insect pests. In Physical control methods in plant protection . Berlin, Heidelberg: Springer Berlin Heidelberg. 2001;224-247.

Bajwa WI, Kogan M. Cultural practices: Springboard to IPM. In Integrated pest management: Potential, constraints and challenges . Wallingford UK: CABI Publishing. 2004;21-38.

Sharma HC. Conventional and biotechnological approaches for pest management: Potential and limitations; 2012.

Kogan M, McGrath D. Integrated pest management: Present dilemmas and future challenges. In Anais 14o Congresso Brasileiro de Entomologia. Piracicaba, SP, Brazil. P. 1993;1-16.

Brévault T, Bouyer J. From integrated to system-wide pest management: Challenges for sustainable agriculture. Outlooks on Pest Management. 2014;25 (3):212-213.

Jindal VIKAS, Dhaliwal GS, Koul OPENDER. Pest management in 21st century: Roadmap for future. Biopesticides International. 2013;9(1):22.

Handler AM, Beeman RW. United States Department of Agriculture—Agricultural Research Service: Advances in the molecular genetic analysis of insects and their application to pest management. Pest Management Science: Formerly Pesticide Science. 2003;59(6‐7):728-735.

Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. Journal of Applied Genetics. 2011;52:413-435.

Verma M, Kulshrestha S, Puri A. Genome sequencing. Bioinformatics: Volume I: Data, Sequence Analysis, and Evolution. 2017;3-33.

Park ST, Kim J. Trends in next-generation sequencing and a new era for whole genome sequencing. International Neurourology Journal. 2016;20(Suppl 2): S76.

Li F, Zhao X, Li M, He K, Huang C, Zhou Y, Walters JR. Insect genomes: Progress and challenges. Insect Molecular Biology. 2019;28(6):739-758.

Armstrong KF, Ball SL. DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005;360(1462):1813-1823.

Sun Z, Chen Y, Chen Y, Lu Z, Gui F. Tracking adaptive pathways of invasive insects: Novel insight from genomics. International Journal of Molecular Sciences. 2023;24(9):8004.

Lucas JA. Advances in plant disease and pest management. The Journal of Agricultural Science. 2011;149(S1):91-114.

Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Barka EA. Biological control of plant pathogens: A global perspective. Microorganisms. 2022; 10(3):596.

Van Leeuwen T, Dermauw W, Mavridis K, Vontas J. Significance and interpretation of molecular diagnostics for insecticide resistance management of agricultural pests. Current Opinion in Insect Science. 2020;39:69-76.

Van Etten J, De Sousa K, Cairns JE, Dell’Acqua M, Fadda C, Guereña D, Tufan HA. Data-driven approaches can harness crop diversity to address heterogeneous needs for breeding products. Proceedings of the National Academy of Sciences. 2023;120(14):e2205771120.

Dastranj M, Gharechahi J, Salekdeh GH. Insect pest proteomics and its potential application in pest control management. Agricultural Proteomics Volume 2: Environmental Stresses. 2016; 267-287.

Wang Y, Liu Q, Du L, Hallerman EM, Li Y. Transcriptomic and metabolomic responses of rice plants to Cnaphalocrocis medinalis caterpillar infestation. Insects. 2020;11(10):705.

Wei N, Zhong Y, Lin L, Xie M, Zhang G, Su W, Chen H. Transcriptome analysis and identification of insecticide tolerance-related genes after exposure to insecticide in Sitobion avenae. Genes. 2019;10 (12):951.

Liseron-Monfils C, Ware D. Revealing gene regulation and associations through biological networks. Current Plant Biology. 2015;3:30-39.

Kadoić Balaško M. Genomic changes associated with insecticide resistance in economically important insect pests in Croatia (Doctoral dissertation, University of Zagreb. Faculty of Agriculture); 2022.

Kirsch R, Wielsch N, Vogel H, Svatoš A, Heckel DG, Pauchet Y. Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle. Bmc Genomics. 2012;13:1-15.

Gundersen-Rindal D, Dupuy C, Huguet E, Drezen JM. Parasitoid polydnaviruses: evolution, pathology and applications: Dedicated to the memory of Nancy E. Beckage. Biocontrol Science and Technology. 2013;23(1):1-61.

Silva AM, Vitorino R, Domingues MRM, Spicket CM, Domingues P. Post-translational modifications and mass spectrometry detection. Free Radical Biology and Medicine. 2013;65:925-941.

Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: A review. Molecular Omics. 2021;17(6):860-880.

Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP. Metabolomics as an emerging tool for the study of plant–pathogen interactions. Metabolites. 2020;10(2):52.

Peng L, Zhao Y, Wang H, Zhang J, Song C, Shangguan X, He G. Comparative metabolomics of the interaction between rice and the brown planthopper. Metabolomics. 2016;12:1-15.

Hamany Djande CY, Pretorius C, Tugizimana F, Piater LA, Dubery IA. Metabolomics: A tool for cultivar phenotyping and investigation of grain crops. Agronomy. 2020;10(6):831.

Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Behera TK. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences. 2022;23 (5):2690.

Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020; 578(7794):229-236.

Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SÁ. TALEN and CRISPR/Cas genome editing systems: Tools of discovery. Acta Naturae (англоязычная версия). 2014;6(3)22)):19-40.

Sun N, Zhao H. Transcription activator‐like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing. Biotechnology and Bioengineering. 2013;110(7):1811-1821.

Hossain MA. CRISPR-Cas9: A fascinating journey from bacterial immune system to human gene editing. Progress in Molecular Biology and Translational Science. 2021; 178:63-83.

Zhu LJ. Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology. Frontiers in Biology. 2015;10 (4):289-296.

Sun N, Zhao H. Transcription activator‐like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing. Biotechnology and Bioengineering. 2013;110(7):1811-1821.

Ochiai H, Yamamoto T. Genome editing using zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Targeted Genome Editing Using Site-Specific Nucleases: ZFNs, TALENs, and the CRISPR/Cas9 System. 2015;3-24.

Hu H, Scheben A, Edwards D. Advances in integrating genomics and bioinformatics in the plant breeding pipeline. Agriculture. 2018;8(6):75.

She R, Chu JSC, Wang K, Pei J, Chen N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Research. 2009;19(1):143-149.

Puranik R, Quan G, Werner J, Zhou R, Xu Z. A pipeline for completing bacterial genomes using In silico and wet lab approaches. In BMC genomics. BioMed Central. 2015;16:1-8.

Bourawy A, Abdalla A. Germline short variant discovery and annotation pipeline using GATK tool. Al Qalam Journal of Medical and Applied Sciences. 2023;424-432.

Edmonson MN, Zhang J, Yan C, Finney RP, Meerzaman DM, Buetow KH. Bambino: A variant detector and alignment viewer for next-generation sequencing data in the SAM/BAM format. Bioinformatics. 2011;27(6):865-866.

Stanke M, Morgenstern B. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research. 2005; 33(suppl_2):W465-W467.

Yao H, Guo L, Fu Y, Borsuk LA, Wen TJ, Skibbe DS, Schnable PS. Evaluation of five ab initio gene prediction programs for the discovery of maize genes. Plant Molecular Biology. 2005;57:445-460.

Mulder N, Apweiler R. InterPro and InterProScan: Tools for protein sequence classification and comparison. Comparative Genomics. 2007;59-70.

Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Research. 2002;30(1):42-46.

Poelchau MF, Coates BS, Childers CP, De Leon AAP, Evans JD, Hackett K, Shoemaker D. Agricultural applications of insect ecological genomics. Current Opinion in Insect Science. 2016;13:61-69.

Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, Fei Z. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology. 2016;14:1-15.

Giron D, Dubreuil G, Bennett A, Dedeine F, Dicke M, Dyer LA, Pincebourde S. Promises and challenges in insect–plant interactions. Entomologia Experimentalis et Applicata. 2018;166(5):319-343.

Wani SH, Choudhary M, Barmukh R, Bagaria PK, Samantara K, Razzaq A, Varshney RK. Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. Theoretical and Applied Genetics. 2022;135(11):3875-3895.

Simon JC, d’Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, Streiff R. Genomics of adaptation to host-plants in herbivorous insects. Briefings in Functional Genomics. 2015;14(6):413-423.

Younis A, Siddique MI, Kim CK, Lim KB. RNA interference (RNAi) induced gene silencing: A promising approach of hi-tech plant breeding. International Journal of Biological Sciences. 2014;10 (10):1150.

Hendrichs J, Robinson A. Sterile insect technique. In Encyclopedia of insects (pp. 953-957). Academic Press; 2009.

Alemu M. Trend of biotechnology applications in pest management: A review. International Journal of Applied Sciences and Biotechnology. 2020;8(2): 108-131.


Gulinuer A, Xing B, Yang L. Insects. 2023;14(2):100.

Moon TT, Maliha IJ, Khan AAM, Chakraborty M, Uddin MS, Amin MR, Islam T. CRISPR-Cas genome editing for insect pest stress management in crop plants. Stresses. 2022;2(4):493-514.

Abdel-Banat BM, El-Shafie HA. Genomics approaches for insect control and insecticide resistance development in date palm. In The Date Palm Genome, Vol. 2: Omics and Molecular Breeding . Cham: Springer International Publishing. 2021; 215-248.

Available:https://www.slideshare.net/Shanura/nuclear-techniquesin-food-and-agriculture) https://www.researchgate.net/figure/Sterile-Insect-Technique